Dual control cell reaction ensemble molecular dynamics: a method for simulations of reactions and adsorption in porous materials.
نویسندگان
چکیده
We present a simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing in a porous material. The method is a combination of the reaction ensemble Monte Carlo method and the dual control volume grand canonical molecular dynamics technique. The method, termed the dual control cell reaction ensemble molecular dynamics method, allows for the calculation of both equilibrium and nonequilibrium transport properties in porous materials such as diffusion coefficients, permeability, and mass flux. Control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the thermodynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane reaction within a nanoscale reactor model in the presence of a semipermeable membrane that was modeled as a porous material similar to silicalite. We studied the effects of the membrane structure and porosity on the reaction species permeability by considering three different membrane models. We also studied the effects of an imposed pressure gradient across the membrane on the mass flux of the reaction species. Conversion of syngas (H2/CO) increased significantly in all the nanoscale membrane reactor models considered. A brief discussion of further potential applications is also presented.
منابع مشابه
Molecular Simulation of Reaction and Adsorption in Nanochemical Devices: Increase of Reaction Conversion by Separation of a Product from the Reaction Mixture
We present a novel simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing within a molecularly porous material. The method is a combination of the Reaction Ensemble Monte Carlo method and the Dual Control Volume Grand Canonical Molecular Dynamics technique. The method, termed the Dual Control Cell Reaction Ensemble Molecular Dynamics (DCCRxMD) method, ...
متن کاملMolecular dynamics studies of straight-chain alkanes diffusion in SiO2 ceramic versus Bosanquet formula
Molecular Dynamics (MD) simulations were applied to calculate self-diffusion coefficients (Di ) and heats of adsorption for ethane, propane and n-butane. The simulations were done in temperature range of 300-525 K for various concentrations inside the pores of silicalite type zeolite. The calculated values of self-diffusion coefficients and heats of adsorption resulted from the current wo...
متن کاملMechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects
Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...
متن کاملEstimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach
Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 121 10 شماره
صفحات -
تاریخ انتشار 2004